
LLNL-SR-609815

heXRD: Modular, Open Source Software
for the Analysis of High Energy X-Ray
Diffraction Data

D. E. Boyce, J. V. Bernier

January 9, 2013

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Final Report

Progress

During the contract period we had regular face-to-face meetings and
worked with the contract PI, continually updating project priorities as
the project proceeded. The project focus shifted primarily to the user
interface intending to expand the user base. Notable accomplishments
include:

• release of an open source version of hexrd on github
• presentation of the hexrd GUI at the high energy X-ray

workshop at APS in October, 2011

GUI:
The GUI was expanded and now includes pages for

• material: crystallographic parameters,
• readers: parameters for GE deter
• detector: interactive detector calibration
• spots: setting parameters for spot finding
• indexing: grain indexing parameters
• grains: more detailed grain data
• graphics canvas: generic canvas for viewing detector images

with various overlays
The pages for the materials, readers, detector and graphic canvas are
mature. Pages for spots and indexing are relatively new; they have a
basic functionality but need refinement. The grain details page is laid
out (see grain-panel branch on github) but is not fully integrated.

Core
In terms of the underlying python core code base, improvements were
made. The experiment module was developed as a focal point for the
user interface. The intention was to make the hexrd package API
accessible through this module. It would be source for scripted data
processing as well as the primary callback for GUI development.

An essential performance issue was resolved during one of our
meetings at APS. The mapping between pixel coordinates and polar
coordinates had been using far too memory, so much that the
application would crash on laptops and machines without large
memory. This was resolved by breaking the calculation into smaller

components that could be performed independently, thus limiting the
memory in use at any given time.

The sglite package was interfaced with hexrd. The sglite package
provides information about space groups. The package had an
existing, but old, python interface, which needed some minor updates.
Another python module, spacegroup, was added to wrap the
capabilities in a form appropriate for hexrd.

Documentation

We have set up a sphinx documentation system (see start-doc branch
on github). Currently, the system is set up to automatically document
the API of the Experiment class of the experiment module, which was
intended to be the primary interface module.

Recommendations

Most of the recommendations are directed toward software
management with the goal of gaining a larger user base for HEXRD.
Since HEXRD is now publicly available, priorities include establishing
and documenting an API (application programming interface) and
making it easy for new users to get started.

Standardization

The first recommendation is to standardize the source code according
to the python style guide (see Links section). The guide documents the
conventions for source code and docstring style. The main advantage
of following the style guide is to provide consistency both internally
and with standard python packages. Additionally, software that
processes the code to format or to produce documentation may expect
these guidelines to be followed; for example, naming conventions are
used to determine which variables and methods are considered public.
The one exception to the style guide is that we recommend the use of
relative path names instead of absolute paths for intra-package
references. We believe that relative path names will be easier to use if
subpackages need to be moved within a package.

Documentation

For python, the API of a module specifies the publicly accessible
classes, functions and data. Sphinx is currently the standard
documentation system for python. It can be used to automatically
generate the API documentation for modules, but it can also process
manually generated files. For HEXRD, we recommend:

• Follow the python style guide for naming public entities.
• Use Sphinx as the primary documentation tool.
• Manually document the experiment module as the primary API.
• Document the lower level modules as they are modified.

Testing

There needs to be standard tests and examples available. A new user
needs to have a sample problem that he/she can run. Developers
need existing tests to confirm that their changes do not break existing
code, and they need to contribute new tests along with new features.
Python provides tools for developing, managing and documenting
tests.

• unittest: a standard python module for organizing and
automating test code

• doctest: a standard python module for testing and documenting
interactive tests

In addition, longer examples need to be provided for HEXRD since
many of the capabilities act on large data sets in potentially complex
sequences of actions. New users need simple cases to get started.
Developers need examples that exercise all code capabilities.

Data Format

Because some postprocessing operations can take a long time, we
need to be able to store the state of processing so that we can resume
work later. Currently, HEXRD primarily uses the python pickle module
to serialize certain data structures and write them to files. The
advantage is that it is easy to program and works reasonably well. The
disadvantage is that if the underlying modules and classes change too
much, the pickled data files can become incompatible and need to be
modified.

Standard data formats need to be developed and documented. The
numpy module provides tools for numerical and image data. The

python module ConfigParser handles configuration style files. These
are useful for text-based data formats and for organization.

Other Recommendations

GUI: Because there may be issues moving forward with wxPython as
the GUI interface, we recommend porting the GUI capabilities to PyQt.

Distribution: Use PyPI for distribution.

Performance: Use cython for bottlenecks when possible.

Links

Python style guide Describes conventions for python source code

and docstrings
PyPI Python Package Index, a repository for

python software
PyQt Python bindings for Qt application framework
cython Interfacing C with python

